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AAbstract - In this article, we define and study the concepts of strongly - summable and - statistical convergence 
of sequence of fuzzy numbers for several relations among them.  
Keywords : Sequence of fuzzy numbers; Difference sequence; Statistical convergence; Summability. 

I. INTRODUCTION 

he idea of the statistical convergence of sequence was introduced by Fast [4] and Schoenberg [12] 
independently in order to extend the notion of convergence of sequences. It is also found in Zygmund [16]. 
Later on it was linked with summability by Fridy and Orhan [5], Maddox [9] and many others. In [11] Nuray and 

Sava  extended the idea to sequences of fuzzy numbers and discussed the concept of statistically Cauchy 
sequences of fuzzy numbers. On strongly -summability and -statistical convergence can be found in [14]. In this 
article we extend these notions to difference sequences of fuzzy numbers. 

Let = {A : A compact and convex}. The space has a liner structure induced by the 

operations  and . The Hausdroff distance 

between A and B of  is defined as: 

= . 

Let denote the set of all fuzzy numbers. The linear structure of  induces addition  and 
scalar multiplication  in terms of -level sets, by 

= + and  for each  where the -level set =

 is a nonempty compact and convex subset of and  is a fuzzy number i.e., a function 

from to [0, 1] which is normal, fuzzy convex, upper semi-continuous and the closure  =
is compact. 
    Define for each 

 

=

 
And . Clearly with 

 

if 

 

Moreover 

 

is a complete, 

separable and locally compact metric space (see [1]). 
 

Throughout the paper,  will denote  with 

We now state the following definitions which can be found in [8, 11, 13]. 
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A sequence  of fuzzy numbers is a function  from the set  of all positive integers into  The 

fuzzy number  denotes the value of the function at  and is called the k-th term or general term of the 
sequence. 

A sequence  of fuzzy numbers is said to be convergent to the fuzzy number  written as 

  if for every  there exists  such that 

         
Again  is said to be a Cauchy sequence if for every  there exists  such that 

  for 

 

 A sequence of fuzzy numbers is said to be bounded if the set  of fuzzy numbers is 
bounded. 

The natural density of a set  of positive integers is denoted by  and defined by 

=

 A sequence of fuzzy numbers is said to be statistically convergent to a fuzzy number  if for every  

  

= 0 and we write st-lim 

 

Let

 

 be a real sequence space, then Kizmaz [7] introduced the following difference sequence spaces:  

 for

  

,where = - , for all  

 
II. NEW

 

DEFINITIONS AND MAIN

 

RESULTS 

 

In this section we define some new definitions and investigate the main results of this article. 
Let be a non-negative integer. Let  be a non-decreasing sequence of positive numbers tending to 

 and Then the sequence of fuzzy numbers is said to be strongly -

 

summable to a 

fuzzy number  if 

 

where 

  

and = and 

 

for all     

. For details about the operator, one can refer to Dutta [2, 3] 

 In this expansion it is important to note that we take =  for non- positive values of   

If we take  then strongly - summability reduces to strongly summability. It is clear that strongly 

-summability implies strongly -summability.  

 

In particular if we take 

 

for all 

 

then we say 

  

is strongly -

 

Cesàro summable to 

 
A sequence 

 

of fuzzy numbers is said to be -

 

statistically convergent to a fuzzy number 

 

if 
for every 

 

> 0
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= 0

In particular if we take for all then we say that is - statistically convergent to 
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Again if we take for all  then - statistically convergence reduces to statistically 

convergence. Our next aim is to present some relationship between strongly - summability and - 

statistically convergent.

 

Theorem

 

2.1.

 

If a sequence

  

is strongly

 

- summable then it is

 

- statistically 
convergent.

 

Proof. Suppose  is strongly - summable to  Then 

 

Now the result follows from the following inequality:

 
 

 
 

Theorem

 

2.2.

 

If a sequence

  

is

 

- bounded and

 

- statistically convergent then it is 

strongly

 

- summable. 

Proof. Suppose  is

 

-bounded and - statistically convergent to  Since  is

 

-

bounded, we can find a fuzzy number such that  

 

for all k N

 

Again since 

 

is -

 

statistically convergent to 

 

for every 

 

= 0

 

Now the result follows from the following inequality:

 

= +

        

                             

 

+ 

 
 

Corollary

 

2.3.

 

If a sequence

  

is -

 

bounded

 

and

 

-

 

statistically convergent then it is strongly

 

-

 

Cesàro summable.

 
 

Proof.

 

Proof follows by combining the above Theorem and the following inequality:
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= 0.

= +

+

                                   

Theorem 2.4. If a sequence is - statistically convergent and lim infn > 0 then it is - 

statistically convergent.
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Proof. Assume the given conditions. For a given  > 0, we have 

                    

 

Hence the proof follows from the following inequality: 

                  

 

                                                                   

=

 
 

Remark.

 

It is easy to see that if a sequence  is bounded then it is - bounded. If  is -statistically 

convergent then it is -statistically convergent. Again if  is strongly - summable then it is

 

strongly 

- summable. Therefore we can replace the phrases ‘if a sequence  is strongly - summable’ 

by ‘if a sequence  is strongly - summable’, ‘if a sequence  is - bounded and - 

statistically convergent’ by ‘if a sequence  is bounded and - statistically convergent’, ‘if a sequence 

 

 is - bounded and - statistically convergent’ by ‘if a sequence  is  bounded and - 

statistically convergent’ and ‘if a sequence  is

 

- statistically convergent’ by ‘if a sequence  is

 

statistically convergent’ respectively in Theorem 2.1, Theorem 2.2, Corollary 2.3 and Theorem 2.4.
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