

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS & DECISION SCIENCES Volume 12 Issue 1 Version 1.0 January 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

A Note on Strongly $(\Delta_{(r)})^{*}$ - Summable And $(\Delta_{(r)})^{*}$ - Statistical Convergence Sequences Of Fuzzy Numbers

By Iqbal H. Jebril

Taibah University, Kingdom of Saudi Arabia

Abstract - In this article, we define and study the concepts of strongly $(\Delta_{(r)})^{\lambda}$ - summable and $(\Delta_{(r)})^{\lambda}$ - statistical convergence of sequence of fuzzy numbers for several relations among them. *Keywords : Sequence of fuzzy numbers; Difference sequence; Statistical convergence; Summability*

GJSFR Classification: 2000 AMS No: 40A05; 40D25.

A NOTE ON STRONGLY -SUMMABLE AND-STATISTICAL CONVERGENCE SEQUENCES OF FUZZY NUMBERS

Strictly as per the compliance and regulations of :

© 2012 . Iqbal H. Jebril.This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Iqbal H. Jebril

Abstract - In this article, we define and study the concepts of strongly $(\Delta_{(r)})^{\lambda}$ - summable and $(\Delta_{(r)})^{\lambda}$ - statistical convergence of sequence of fuzzy numbers for several relations among them.

Keywords : Sequence of fuzzy numbers; Difference sequence; Statistical convergence; Summability.

I. INTRODUCTION

he idea of the statistical convergence of sequence was introduced by Fast [4] and Schoenberg [12] independently in order to extend the notion of convergence of sequences. It is also found in Zygmund [16]. Later on it was linked with summability by Fridy and Orhan [5], Maddox [9] and many others. In [11] Nuray and Savaş extended the idea to sequences of fuzzy numbers and discussed the concept of statistically Cauchy sequences of fuzzy numbers. On strongly λ -summability and λ -statistical convergence can be found in [14]. In this article we extend these notions to difference sequences of fuzzy numbers.

Let $C(\mathbb{R}^n) = \{A \subset \mathbb{R}^n : A \text{ compact and convex}\}$. The space $C(\mathbb{R}^n)$ has a liner structure induced by the operations $A+B = \{a + b : a \in A, b \in B\}$ and $\lambda A = \{\lambda a : a \in A\}$ for $A, B \in C(\mathbb{R}^n)$ and $\lambda \in \mathbb{R}$. The Hausdroff distance between A and B of $C(\mathbb{R}^n)$ is defined as:

$$\delta_{\infty}(A,B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|a - b\| \right\}$$

Let $L(\mathbb{R}^n)$ denote the set of all fuzzy numbers. The linear structure of $L(\mathbb{R}^n)$ induces addition X + Y and scalar multiplication $\lambda X, \lambda \in \mathbb{R}$, in terms of α -level sets, by

 $[X+Y]^{\alpha} = [X]^{\alpha} + [Y]^{\alpha}$ and $[\lambda X]^{\alpha} = \lambda [X]^{\alpha}$ for each $0 \leq \alpha \leq 1$, where the α -level set $[X]^{\alpha} = \{x \in \mathbb{R}^n : X(x) \geq \alpha\}$ is a nonempty compact and convex subset of \mathbb{R}^n and X is a fuzzy number i.e., a function from \mathbb{R}^n to [0, 1] which is normal, fuzzy convex, upper semi-continuous and the closure $X^0 = \{x \in \mathbb{R}^n : X(x) > 0\}$ is compact.

Define for each $1 \le q < \infty$

$$d_q(X,Y) = \left(\int_0^1 \delta_\infty(X^\alpha,Y^\alpha)^q d_\infty\right)^{1/q}$$

And $d_{\infty} = \sup_{0 \le \alpha \le 1} \delta_{\infty}(X^{\alpha}, Y^{\alpha})$. Clearly $d_{\infty}(X, Y) = \lim_{q \to \infty} d_q(X, Y)$ with $d_q \le d_r$ if $q \le r$. Moreover d_q is a complete,

separable and locally compact metric space (see [1]).

Throughout the paper, *d* will denote d_q with $1 \le q < \infty$.

We now state the following definitions which can be found in [8, 11, 13].

Author : Department of Mathematics, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia. E-mail : iqbal501@yahoo.com

A sequence $X = (X_k)$ of fuzzy numbers is a function X from the set N of all positive integers into L(R). The fuzzy number X_k denotes the value of the function at $k \in N$ and is called the k-th term or general term of the sequence.

A sequence $X = (X_k)$ of fuzzy numbers is said to be convergent to the fuzzy number X_0 , written as $\lim_k X_k = X_0$, if for every $\varepsilon > 0$ there exists $n_0 \in N$ such that

$$d(X_k, X_0) < \varepsilon \text{ for } k > n_0$$

Again $X = (X_k)$ is said to be a Cauchy sequence if for every $\varepsilon > 0$ there exists $n_0 \in N$ such that

 $d(X_k, X_l) < \varepsilon$ for $k, l > n_0$

A sequence $X = (X_k)$ of fuzzy numbers is said to be bounded if the set $\{X_k: k \in N\}$ of fuzzy numbers is bounded.

The natural density of a set K of positive integers is denoted by $\delta(K)$ and defined by

$$\delta(K) = \lim_{n} \frac{1}{n} \operatorname{card} \left\{ k \le n : k \in K \right\}$$

A sequence $X = (X_k)$ of fuzzy numbers is said to be statistically convergent to a fuzzy number X_0 if for every

 $\varepsilon > 0$, $\lim_{k \to \infty} \frac{1}{\epsilon} \operatorname{card} \left\{ k \le n : d(X_k, X_0) \ge \varepsilon \right\} = 0$ and we write st-lim $X_k = X_0$.

Let Z be a real sequence space, then Kizmaz [7] introduced the following difference sequence spaces:

$$Z(\Delta) = \{ (x_k) \in W: (\Delta^{X_k}) \in Z \},\$$

for $Z = \ell_{\infty}$, c, c_0 , where $\Delta x_k = x_k x_{k+1}$, for all $k \in N$.

II. NEW DEFINITIONS AND MAIN RESULTS

In this section we define some new definitions and investigate the main results of this article.

Let *r* be a non-negative integer. Let $\lambda = (\lambda_k)$ be a non-decreasing sequence of positive numbers tending to ∞ and $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$. Then the sequence $X = (X_k)$ of fuzzy numbers is said to be strongly $(\Delta_{(r)})^{\lambda}$ - summable to a fuzzy number X_0 if

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} d\left(\Delta_{(r)} X_k, X_0\right) = 0, \text{ where } I_n = \left[n - \lambda_n + 1, n\right] \text{ and } \left(\Delta_{(r)} X_k\right) = \left(X_k - X_{k-r}\right) \text{ and } \Delta_{(0)} X_k = X_k \text{ for all } X_k = X_k \text{ for } X_k \text{ for all } X_k = X_k \text{ for } X_k \text{ for } X_k = X_k \text{ for } X_k \text{ for } X_k = X_k \text{ for } X_k \text{ for } X_k = X_k \text{ for } X_$$

 $k \in N$. For details about the operator, one can refer to Dutta [2, 3]

In this expansion it is important to note that we take $X_k = \overline{0}$ for non-positive values of k.

If we take r = 0, then strongly $(\Delta_{(r)})^{\lambda}$ -summability reduces to strongly λ -summability. It is clear that strongly λ -summability implies strongly $(\Delta_{(r)})^{\lambda}$ -summability.

In particular if we take $\lambda_n = n$, for all $n \in N$ then we say $X = (X_k)$ is strongly $\Delta(r)$ - Cesàro summable to X_0 .

A sequence $X = (X_k)$ of fuzzy numbers is said to be $(\Delta_{(r)})^{\lambda}$ - statistically convergent to a fuzzy number X_0 if for every $\varepsilon > 0$

$$\lim_{n} \frac{1}{\lambda_{n}} \operatorname{card} \left\{ k \in I_{n} : d(\Delta_{(r)} X_{k}, X_{0}) \ge \varepsilon \right\} = 0$$

In particular if we take $\lambda_n = n$, for all $n \in N$, then we say that $X = (X_k)$ is $\Delta_{(r)}$ - statistically convergent to X_0 .

Again if we take $\lambda_n = n$, for all $n \in N$, r = 0, then $(\Delta_{(r)})^{\lambda}$ - statistically convergence reduces to statistically convergence. Our next aim is to present some relationship between strongly $(\Delta_{(r)})^{\lambda}$ - summability and $(\Delta_{(r)})^{\lambda}$ - statistically convergent.

Theorem 2.1. If a sequence $X = (X_k)$ is strongly $(\Delta_{(r)})^{\lambda}$ - summable then it is $(\Delta_{(r)})^{\lambda}$ - statistically convergent.

Proof. Suppose $X = (X_k)$ is strongly $(\Delta_{(r)})^{\lambda}$ - summable to X_0 . Then

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\sum_{k\in I_n}d\left(\Delta_{(r)}X_k,X_0\right)=0.$$

Now the result follows from the following inequality:

$$\sum_{k \in I_n} d\left(\Delta_{(r)} X_k, X_0\right) \geq \varepsilon \operatorname{card}\left\{k \in I_n : d(\Delta_{(r)} X_k, X_0) \geq \varepsilon\right\}$$

Theorem 2.2. If a sequence $X = (X_k)$ is $\Delta_{(r)}$ - bounded and $(\Delta_{(r)})^{\lambda}$ - statistically convergent then it is strongly $(\Delta_{(r)})^{\lambda}$ - summable.

Proof. Suppose $X = (X_k)$ is $\Delta_{(r)}$ -bounded and $(\Delta_{(r)})^{\lambda}$ - statistically convergent to X_0 . Since $X = (X_k)$ is $\Delta_{(r)}$ -bounded, we can find a fuzzy number M such that $d(\Delta_{(r)}X_k, X_0) \le M$ for all $k \in N$

Again since $X = (X_k)$ is $(\Delta_{(r)})^{\lambda}$ - statistically convergent to X_0 , for every $\varepsilon > 0$

$$\lim_{n} \frac{1}{\lambda_{n}} \operatorname{card} \left\{ k \in I_{n} : d(\Delta_{(r)}X_{k}, X_{0}) \ge \varepsilon \right\} = 0$$

Now the result follows from the following inequality:

$$\frac{1}{\lambda_n} \sum_{k \in I_n} d\left(\Delta_{(r)} X_k, X_0\right) = \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ d(\Delta_{(r)} X_k, X_0) \ge \varepsilon}} d(\Delta_{(r)} X_k, X_0) + \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ d(\Delta_{(r)} X_k, X_0) < \varepsilon}} d(\Delta_{(r)} X_k, X_0)$$

$$\leq \frac{M}{\lambda_n} \operatorname{card}\left\{k \in I_n : d(\Delta_{(r)} X_k, X_0) \ge \varepsilon\right\} + \varepsilon$$

Corollary 2.3. If a sequence $X = (X_k)$ is $\Delta_{(r)}$ - bounded and $(\Delta_{(r)})^{\lambda}$ - statistically convergent then it is strongly $\Delta_{(r)}$ - Cesàro summable.

Proof. Proof follows by combining the above Theorem and the following inequality:

$$\frac{1}{n}\sum_{k=1}^{n}d\left(\Delta_{(r)}X_{k},X_{0}\right) = \frac{1}{n}\sum_{k=1}^{n-\lambda_{n}}d\left(\Delta_{(r)}X_{k},X_{0}\right) + \frac{1}{n}\sum_{k\in I_{n}}d\left(\Delta_{(r)}X_{k},X_{0}\right)$$
$$\leq \frac{1}{\lambda_{n}}\sum_{k=1}^{n-\lambda_{n}}d\left(\Delta_{(r)}X_{k},X_{0}\right) + \frac{1}{\lambda_{n}}\sum_{k\in I_{n}}d\left(\Delta_{(r)}X_{k},X_{0}\right)$$
$$\leq \frac{2}{\lambda_{n}}\sum_{k\in I_{n}}d\left(\Delta_{(r)}X_{k},X_{0}\right)$$

Theorem 2.4. If a sequence $X = (X_k)$ is $\Delta_{(r)}$ - statistically convergent and lim $\inf_n \left(\frac{\lambda_n}{n}\right) > 0$ then it is $(\Delta_{(r)})^{\lambda}$ - statistically convergent.

Proof. Assume the given conditions. For a given $\varepsilon > 0$, we have

$$\left\{k \in I_n : d(\Delta_{(r)}X_k, X_0) \ge \varepsilon\right\} \subset \left\{k \le n : d(\Delta_{(r)}X_k, X_0) \ge \varepsilon\right\}$$

Hence the proof follows from the following inequality:

$$\frac{1}{n}\operatorname{card}\left\{k \le n : d(\Delta_{(r)}X_k, X_0) \ge \varepsilon\right\} \ge \frac{1}{n}\operatorname{card}\left\{k \in I_n : d(\Delta_{(r)}X_k, X_0) \ge \varepsilon\right\}$$
$$= \frac{\lambda_n}{n}\frac{1}{\lambda_n}\operatorname{card}\left\{k \in I_n : d(\Delta_{(r)}X_k, X_0) \ge \varepsilon\right\}$$

Remark. It is easy to see that if a sequence $X = (X_k)$ is bounded then it is $\Delta_{(r)}$ - bounded. If $X = (X_k)$ is λ -statistically convergent then it is $(\Delta_{(r)})^{\lambda}$ -statistically convergent. Again if $X = (X_k)$ is strongly λ - summable then it is strongly $(\Delta_{(r)})^{\lambda}$ - summable. Therefore we can replace the phrases 'if a sequence $X = (X_k)$ is strongly $(\Delta_{(r)})^{\lambda}$ - summable' by 'if a sequence $X = (X_k)$ is strongly λ - summable', 'if a sequence $X = (X_k)$ is $\Delta_{(r)}$ - bounded and $(\Delta_{(r)})^{\lambda}$ statistically convergent' by 'if a sequence $X = (X_k)$ is bounded and λ - statistically convergent', 'if a sequence $X = X_k$ (X_k) is $\Delta_{(r)}$ - bounded and $(\Delta_{(r)})^{\lambda}$ - statistically convergent by 'if a sequence $X = (X_k)$ is bounded and λ statistically convergent' and 'if a sequence $X = (X_k)$ is $\Delta_{(r)}$ - statistically convergent' by 'if a sequence $X = (X_k)$ is statistically convergent' respectively in Theorem 2.1, Theorem 2.2, Corollary 2.3 and Theorem 2.4.

References Références Referencias

- 1. P. Diamond, P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets and Systems, Vol. 35, p. 241-249, 1990.
- 2. H. Dutta, On some isometric spaces of c_0^F , c^F and ℓ_{∞}^F , Acta Universitatis Apulensis, Vol. 19, 2009, pp. 107-112. 3. H. Dutta, On some complete metric spaces of strongly summable sequences of fuzzy numbers, Rendiconti del Seminario Matematico UNIPOLITO, Vol. 68, No. 1, 2010, pp. 29-36.
- 4. H. Fast, Sur la convergence statistique, Colloq. Math., p. 241-244, 1951.
- 5. J.A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., Vol. 125, p. 3625-3631, 1997.
- 6. Igbal H. Jebril, A generalization of strongly Cesaro and strongly lacunary summable spaces, Acta Universitatis Apulensis, Vol. 23, 2010, 49-61.
- 7. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., Vol. 24, p.168-176, 1981.
- 8. M. Matloka, Sequences of fuzzy numbers, BUSEFAL, Vol. 28, p. 28-37, 1986.
- 9. I.J. Maddox, A Tauberian condition for statistical convergence, Math. Proc. Camb. Phil. Soc., Vol. 106, p. 277-280, 1989.
- 10. S. Nanda, On sequence of fuzzy numbers, Fuzzy Sets and Systems, Vol. 33, p. 28-37, 1989.
- 11. F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, Vol. 45, p. 269-273, 1995.
- 12. I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, Vol. 66, p. 3621-4375, 1959.
- 13. E. Savas, A note on sequence of fuzzy numbers, Inform. Sciences, Vol. 124, p. 297-300, 2000.
- 14. E. Savaş, On strongly λ-summable sequences of fuzzy numbers, Inform. Sciences, Vol. 125, p. 181-186, 2000.
- 15. L.A. Zadeh, Fuzzy sets, Inform and Control, Vol. 8, p. 338-353, 1965.
- 16. A. Zygmund, Trigonometric series, Cambridge, Vol. 2, 1993.